Synthesis and Structure of Palladium(II) and Copper(II) Complexes with Chiral Bis-α-aminooximes Containing (+)-3-Carene or (+)-Limonene Fragments and 4,4'-Methylenedianiline Linker. Crystal Structure of the Complex [Cu(*i*-PrOH)Cl₂(μ-H₂L³)CuCl₂·H₂O]

T. E. Kokina^{a, b}, A. V. Tkachev^{b, c}, L. I. Myachina^a, S. N. Bizyaev^c, L. A. Sheludyakova^a, L. A. Glinskaya^a, I. V. Korol'kov^a, E. G. Boguslavskii^a, and S. V. Larionov^a

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent'eva 3, Novosibirsk, 630090 Russia e-mail: kokina@niic.nsc.ru

^b Novosibirsk State University, Novosibirsk, Russia

^c Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent'eva 9, Novosibirsk, 630090 Russia

Received October 4, 2011

Abstract—Coordination compounds $Pd_2(H_2L^2)Cl_4$ (**I**), $Cu_2(H_2L^2)Cl_4$ (**II**), $Pd_2(H_2L^3)Cl_4$ (**III**), and $Cu_2(H_2L^3)Cl_4$ (**IV**), where H_2L^2 and H_2L^3 are chiral bis-α-aminooxime ligands consisting of (+)-3-carene or (+)-limonene fragments and 4,4'-methylenedianiline linker, were synthesized and examined by NMR, ESR, and IR spectroscopy. The structure of $[Cu(i-PrOH)Cl_2(\mu-H_2L^3)CuCl_2\cdot H_2O]$ (**V**) was determined by X-ray analysis.

DOI: 10.1134/S1070363213020175

Coordination compounds with optically active ligands derived from natural terpenes attract interest from both theoretical and practical viewpoints [1–4]. We previously synthesized mononuclear Co(II), Co(III), Ni(II), and Cu(II) complexes with chiral ethylenediaminodioximes and propylenediaminodioximes con-

taining fragments of natural terpenes, (+)-3-carene, α -pinene, and limonene [5–13]. We recently reported on the reactions of PdCl₂ with chiral ethylenediaminodioxime derived from (+)-3-carene (H₂L) [14] and with meta- α , α' -diaminoxylene dioximes derived from (+)-3-carene (H₂L¹), (R)-(+)-limonene, and α -pinene [15].

Unlike H₂L, diaminodioxime H₂L¹ contains a benzene ring in the bridge connecting the terpene fragments. The reactions of these ligands with PdCl₂ afforded chiral dinuclear complexes. According to the

X-ray diffraction data, the PdCl₂ fragments in the complex [Pd₂(H₂L)Cl₄] occupy *trans* positions [14]. Introduction of a benzene ring into the bridge connecting the terpene fragments in H₂L¹ makes that

bridge rigid and fixes cisoid coordination of PdCl₂ in the complex [Pd₂(H₂L¹)Cl₄] [15]. It was interesting to examine reactions of PdCl₂ and CuCl₂ with chiral diaminodioximes in which the bridging moiety between terpene fragments includes two benzene rings.

The goal of the present work was to synthesize Pd(II) and Cu(II) complexes with ligands H_2L^2 (4,4'-methylenebis {N-[(1S,3S,4E,6R)-4-hydroxyiminocaran-3-yl]-aniline}) and H_2L^3 (4,4'-methylenebis {N-[(1S,2E,4R)-2-hydroxyimino-p-menth-8-en-1-yl]aniline}) and study their properties.

By reacting palladium(II) and copper(II) chlorides with ligands H_2L^2 and H_2L^3 we obtained compounds **I–IV** with a metal–ligand molar ratio of 2:1. In keeping with our previous data [14, 15], this may indicate dinuclear structure of the complexes. Compounds **I** and **III** are diamagnetic, which suggests low-spin (d^8) square configuration of the coordination core. By analogy with $[Pd_2(H_2L)Cl_4]$ [14] and $[Pd_2(H_2L^1)Cl_4]$ [15], complexes **I** and **III** are likely to possess two $PdCl_2N_2$ cores. Like free ligands H_2L^2 and H_2L^3 , complexes **I** and **III** are dextrorotatory.

The number of signals in the NMR spectra of \mathbf{I} is half as much as the number of atoms in molecule H_2L^2 (Table 1); taking into account that the ligand is chiral, this proves C_2 symmetry of the complex. Analysis of spin–spin coupling constants in the spectrum of \mathbf{I} showed [16] that the six-membered carane ring adopts a slightly distorted boat conformation, which is possible only when a chelate ring is formed with

nearly synperiplanar orientation of the amino and oxime nitrogen atoms. Analogous inversion (halfchair boat) of the six-membered carbocycle in 3substituted caran-4-one oxime derivatives was observed by us previously upon complexation with Ni(II) [5, 7, 13, 17, 18], Co(II) [5], Co(III) [9], Cu(II) [6, 13, 19], and Pd(II) [14, 15]. The five-membered chelate ring PdC₂N₂ is formed via coordination of the amino and oxime nitrogen atoms to Pd. The complex formation is not accompanied by hydrogen abstraction from the amino nitrogen atom or oxime oxygen atom, and the corresponding proton signals (N-H and O-H) are retained in the ¹H NMR spectrum (the hydroxy proton signal was determined by polarization transfer upon saturation of the HDO signal due to the presence of water traces in CD₃CN, and the N-H signal was identified by ¹⁵N-¹H coupling).

The configuration of the PdN_2C_2 chelate ring and orientation of the *para*-substituted benzene ring with respect to the cyclohexane ring in the carane fragment were judged by the anomalous upfield shift of the 1-H signal (δ –0.67 ppm in complex **I** against 0.78 ppm in the initial ligand). The only possible reason for the observed shift is the position of the 1-H proton above the aromatic ring plane (due to magnetic susceptibility anisotropy of the latter), which requires in turn *S* configuration of the tetrahedral amino nitrogen atom (*cis* orientation of the methyl group on C^3 and N-H hydrogen atom in the five-membered chelate ring) and coplanar (or nearly coplanar) orientation of the Pd-N(H) bond with respect to the nearest benzene ring (Fig. 1).

Table 1. Parameters of the ¹H and ¹³C NMR spectra of ligand H₂L² and complex **I** at 27°C

Atom no.	H ₂ L ² (6% in CDCl ₃)		I (5% in CD ₃ CN)		
Atom no.	$\delta_{\rm C}$, ppm	$\delta_{\rm H}$, ppm (J , Hz)	δ _C , ppm	δ _H , ppm (<i>J</i> , Hz)	
1	16.33	0.78 d.d.d (9.9, 9.8, 4.8)	22.01	-0.67 d.d.d (8.6, 8.5, 8.2)	
2	37.65	2.23 d.d (15.2, 9.9), 1.55 d.d (15.2, 4.8)	32.07	1.97 d.d (17.1, 8.2), 1.37 d.d (17.1, 8.5)	
3	54.56	_	78.48	_	
4	163.72	-	174.30	-	
5	18.40	2.04 d.d (17.6, 8.5), 3.08 d.d (17.6, 0.8)	21.34	1.50 d.d (15.8, 8.6), 3.34 d.d (15.8, 8.0)	
6	21.39	0.98 d.d.d (9.8, 8.5, 0.8)	22.89	0.70 d.d.d (8.6, 8.6, 8.0)	
7	19.44	-	24.44	_	
8	14.23	0.84 s	14.23	0.92 s	
9	28.06	1.02 s	28.13	0.81 s	
10	22.66	1.42 s	30.08	2.04 s	
11	144.78	-	142.29 ^a	_	
12	114.71	6.66 d (8.5)		7.6 br. (W _{1/2} 300 Hz) ^c	
13	129.29	6.95 d (8.5)	130.70 ^b	7.27 br. (W _{1/2} 22 Hz) ^d	
14	131.46	-	141.49 ^a	_	
15	40.34	$3.77 \text{ s} (^{1}J_{13_{\text{C}}-1_{\text{H}}} 126.0 \text{ Hz})$	40.96	$3.99 \text{ s} (^{1}J_{13\text{C-}^{1}\text{H}} 126.0 \text{ Hz})$	
=N-O <u>H</u>	_	9.34 br.s	_	9.60 br.s	
N- <u>H</u>	_	3.99 br.s	_	6.18 s (¹ J _{15N-1H} 76.1 Hz)	

^a Alternative assignment is possible. ^b The signal in the spectrum recorded with broad-band proton decoupling was appreciably broadened $(W_{1/2} = 3.8 \text{ Hz})$ as compared to the other signals $(W_{1/2} = 1.2 - 1.4 \text{ Hz})$. ^c At 50°C: 7.6 br $(W_{1/2} = 50 \text{ Hz})$. ^d At 50°C: 7.28 d (8.3).

Presumably, restricted rotation about the C^{14} – C^{15} and C^{15} – $C^{14'}$ bonds does not change its character in

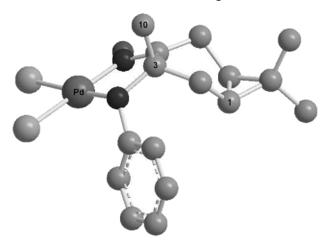
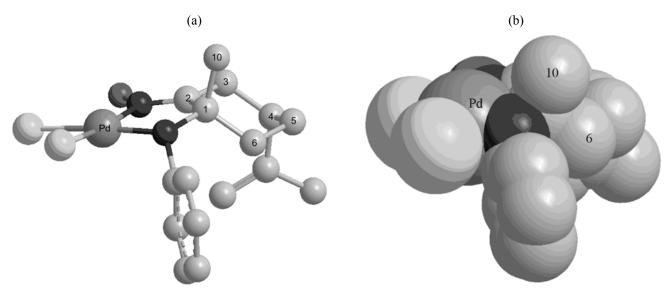


Fig. 1. Partial structure of complex I according to the NMR data. One carane fragment with the PdN_2C_2 chelate ring and one benzene ring are shown.

going from free ligand H_2L^2 to complex I, as follows from slight differences in the spectral parameters of the ArCH₂Ar fragments in H_2L^2 and **I**. Rotation about the N-C¹¹ and N'-C^{11'} bonds in molecule H_2L^2 in solution should also be restricted but nevertheless fast on the NMR time scale, which is indicated by narrow signals in the ¹H and ¹³C NMR spectra. Signals from aromatic protons in the ¹H NMR spectrum of I are strongly broadened, and they become narrower at elevated temperature, their position remaining unchanged. In the ¹³C NMR spectrum of I we observed only one broadened signal from aromatic CH carbon atoms, which was assigned to C¹³/C¹³. No C¹²/C¹² signal was detected, presumably because of strong broadening. The observed pattern may be rationalized assuming that the complexation considerably increases the barrier to rotation about the N-C¹¹ and N'-C¹¹. As a result, the rate of rotation decreases to a value comparable to the NMR time scale.

Table 2. Parameters of the ¹H and ¹³C NMR spectra of ligand H₂L³ and complex **III**


Atom no.	H_2L^3 (5% in C	$CDCl_3$ –DMSO- d_6 , 2 : 1 by volume), $T = 313 \text{ K}$	III (0.5% in CDCl ₃), $T = 293 \text{ K}$			
Atom no.	$\delta_{\rm C}$, ppm	$\delta_{\rm H}$, ppm $(J,{ m Hz})$	δ_{C} , ppm	$\delta_{\rm H}$, ppm (J , Hz)		
1	55.88	-	73.62	-		
2	161.46	_	170.61	_		
3	24.86	pro-R: 1.78 d. d (12.2, 12.2) pro-S: 3.16 d.d.d (12.2, 3.4, 1.3)	28.84	pro-R: 3.47 d.d.d (17.3, 2.2, 2.2) pro-S: 2.26 d. d (17.3, 6.0)		
4	44.73	[1.99]	37.78	2.47 m (W _{1/2} 13 Hz)		
5	25.78	pro-R: 1.91 d.d.d. d (12.3, 12.3, 12.3, 3.6) pro-S: 1.56 d.m (12.3)	24.53	pro-R: 1.91 d.m (14.1, W _{1/2} 9 Hz) pro-S: 1.69 d.d.d. d (14.1, 14.1, 4.0, 3.7		
6	42.00	<i>pro-S</i> : [1.99] <i>pro-R</i> : 1.52 d.d.d (13.3, 13.3, 4.0)	30.55	pro-S: 1.44 d.d.d (14.1, 13.4, 4.0) pro-R: 1.28 d.d.d (13.4, 3.7, 3.7)		
7	147.94		145.04			
8	108.57	H _a : 4.64 br.s H _b : 4.66 br.s	112.24	H _a : 4.71 br.s H _b : 4.95 br.s		
9	20.09	1.67 br.s	21.60	1.61 br.s		
10	22.53	1.32 s	28.72	2.20 s		
11	144.69	-	139.66 ^a	_		
12	114.32	6.57 d (8.4)	124.40	7.22 d (6.7)		
			126.56	7.72 d (6.7)		
13	128.29	6.76 d (8.4)	129.15	6.80 d (7.1)		
			129.60	7.17 d (7.1)		
14	129.83	-	139.63 ^a	_		
15	39.17	3.55 s (¹ <i>J</i> _{13C-1H} 125.7 Hz)	41.20	$3.88 \text{ s} (^{1}J_{13\text{C}-1\text{H}} 126.1 \text{ Hz})$		
=N-O <u>H</u>	_	10.26 s	-	9.84 s		
N- <u>H</u>	_	4.32 br.s	_	$7.02 \text{ s} (^{1}J_{15\text{N}-1\text{H}} 78.4 \text{ Hz})$		

^a Alternative assignment is possible.

Complex III also displayed in the NMR spectra a halved set of signals with respect to the number of atoms in molecule of H_2L^3 (Table 2) and was assigned C_2 symmetry with account taken of the ligand chirality. Significant downfield shifts of the C^3 and C^4 signals indicated coordination of both amino and oxime nitrogen atoms to palladium.

Analysis of the NMR spectra of free ligand H_2L^3 showed that its molecule, like other structurally related α -amino oximes of the *p*-menthane series [20], exists in a conformation with *chair*-like six-membered carbocycle, equatorial isopropenyl group, and axial amino group on C^1 . Comparison of the spectra of ligand H_2L^3 and complex **III** revealed *chair* $I \rightarrow chair$ *II* type inversion of the six-membered carbocycle as a

result of complex formation, so that the isopropenyl group appeared axial, and the C¹-NH group, equatorial. Analogous inversion of chair-like conformation of the cyclohexane fragment in 1-amino-p-menthan-2one oximes always accompanies formation of fivemembered chelate ring upon coordination to transition metals, which was proved by X-ray analysis of Cu(II) [12, 21, 22], Co(III) [9], Ni(II) [11], and Pd(II) complexes [23]. The six-membered carbocycle in the crystalline complex formed by Pd(II) and piperazinebridged bis- α -amino oxime of the p-menthane series [23] had twist conformation which was converted into inverted chair upon dissolution in organic solvents. Thus, there are reasons to believe that the fivemembered chelate ring in complex III is formed via coordination of the amino and oxime nitrogen atoms to

Fig. 2. Partial structure of complex **III** according to the NMR data. (a) Rod-and-ball model and (b) van der Waals radii-based space-filling model. One *p*-menthane fragment, PdN₂C₂ chelate ring, and one benzene ring are shown.

Pd(II) ion and that the ligand remains neutral (neither NH nor oxime OH group undergoes deprotonation). This is confirmed by the presence in the ^{1}H NMR spectrum of **III** of a downfield signal at $\delta \sim 10$ ppm, which is typical of oximes. The NH signal was identified by the $^{1}J(^{15}N-^{1}H)$ coupling constant.

Apart from characteristic variation of spin-spin coupling constants ${}^{3}J_{\rm HH}$ due to inversion of the sixmembered ring in going from free ligand H₂L³ to complex III, appreciable upfield shift of both 6-H signals and downfield shift of the C¹⁰H₃ signal were observed in the ¹H NMR spectrum of III. These shifts indicated quite definitely S configuration of the tetrahedral amino nitrogen atom and trans orientation of the benzene ring and C¹⁰H₃ group in the fivemembered chelate ring (Fig. 2a). Such structure of the chelate ring is consistent with the anomalous chemical shifts of the 6-H protons (due to shielding by the aromatic ring) and with the aromatic signal pattern. The only possible orientation of the benzene ring, which minimizes non-valence interaction with the neighboring chlorine atom and C⁶H₂ methylene group (Fig. 2b), requires that the axial and equatorial protons on C⁶ be located above the benzene ring plane and be subject to its strong shielding effect. In contrast, the C¹⁰H₃ group appears spatially close to the benzene ring plane and is therefore deshielded. The nearest chlorine atom and C⁶H₂ methylene group hinder rotation about the N-C¹¹ bond so strongly that it becomes slow on the NMR time scale at room temperature. As a result, the

 $C^{12}H/C^{12}H$ and $C^{13}H/C^{13}H$ couples become diastereotopic and distinguishable, giving rise to couples of signals in the NMR spectra. As seen in Fig. 2b, the benzene ring is partly "immersed" into a cavity formed by the chlorine atom and C^6H_2 group, which hampers its rotation about the N– C_{arom} bond. The energy barrier to rotation about that bond was estimated at 15.0 ± 0.5 kcal/mol from the temperature dependence of the width of aromatic proton signals. As follows from the weak differences in the spectral parameters of the ArCH₂Ar fragments in H_2L^3 and III, the character of restricted rotation about the C^{14} – C^{15} and C^{15} – $C^{14'}$ bonds therein almost does not change upon complexation.

Thus, according to the NMR data, the reactions of H_2L^2 and H_2L^3 with $PdCl_2$ afforded chiral dinuclear complexes **I** and **III**, respectively, as single C_2 -symmetric diastereoisomers with *trans* orientation of the methyl and phenyl groups relative to the five-membered chelate ring. Structural specificities of the terpene fragment in H_2L^3 are responsible for strongly increased (up to 15 kcal/mol) energy barrier to internal rotation about the $N-C_{arom}$ bond.

The ESR spectrum of crystalline compound II at liquid nitrogen temperature displayed a single symmetric line with an average g-factor value of 2.11 and a width of 160 G. Strong line broadening indicates dinuclear structure of the complex. Crystalline complex IV showed an axial spectrum with $g_{\parallel} = 2.195$ and $g_{\perp} = 2.074$; line width 55 and 70 G; no hyperfine

Compound no.	ν(OH), ν(NH)	v(CN)	ν(NO)	v(M–Cl)
H_2L^2	3327, 3272	1643 sh	928	_
I	3471, 3232, 3108	1650 sh	1027	350,332, 313
II	3441, 3346, 3195	1651 sh	1025	339, 321, 301
H_2L^3	3369, 3269	1645	932	_
ш	3475, 3189, 3148	1641	1040	339
IV	3450, 3194, 3168	1641 s	1031	324, 310, 296

Table 3. Principal vibration frequencies (cm⁻¹) in the IR spectra of ligands H₂L² and H₂L³ and complexes I–IV

structure. The ratio of the longitudinal and transverse *g*-factor shifts (relative to the *g*-factor of free electron) for complex **IV** is 2.6, which is appreciably lower than the value typical of isolated Cu²⁺ ion. These data indicate such crystalline structure of complex **IV** where exchange interaction over magnetically concentrated phase leads to averaged spectrum. In addition, non-coaxial arrangement of the copper(II) coordination polyhedrons in the crystalline structure of **IV** should be assumed.

The ESR spectra of frozen solutions of **II** and **IV** in CHCl₃ resemble the solid-phase spectrum of **II**. This suggests that complexes **II** and **IV** have dinuclear structure in solution as well. Complex **IV** is likely to be dinuclear in crystal.

The experimental effective magnetic moments μ_{eff} of paramagnetic complexes **II** (2.56 B.M.) and **IV** (2.52 B.M.) are close to the calculated value (2.58 B. M.) for a system of two magnetically non-interacting Cu²⁺ ions at 300 K provided that g = 2.11.

The IR spectra of ligands H_2L^2 and H_2L^3 and complexes I-IV are generally similar in the regions corresponding to their main functional groups [v (C=N), v(N-O), v(NH), v(OH); Table 3]. In the spectra of I-IV the v(N-O) band is displaced to higher frequencies, and the v(C=N), v(NH), and v(OH) bands also change their position relative to analogous bands in the spectra of the free ligands, which is indicative of coordination at the nitrogen atoms of the amino and oxime groups. Unlike free ligands, the low-frequency region of the IR spectra of I and III contained new strong v(Pd-Cl) bands (Table 3); their position was similar to that in the spectrum of analogous complex [Pd₂(H₂L)Cl₄] whose structure was determined in [14]. Comparison of the IR spectra of II and IV with those of the complex [Cu(HL⁴)Cl₂] (where HL⁴ is a

caryophyllane type α -alkylamino oxime and the coordination entity $CuCl_2N_2$ is a distorted square) [24] allowed us to identify $\nu(Cu-Cl)$ bands. According to the IR and Raman spectra, $\nu(Cu-Cl)$ stretching vibrations in $[Cu(HL^4)Cl_2]$ give rise to a structured band in the region 317–290 cm⁻¹ with its maximum at 305 cm⁻¹ [24]. Analogous structured band was observed in the region 339–296 cm⁻¹ in the spectra of II and IV. It was difficult to identify bands due to vibrations of M–N bonds (M = Pd, Cu) in the 500–350-cm⁻¹ region of the spectra of I–IV, for that region also contained absorption bands typical of free ligands H_2L^2 and H_2L^3 . In keeping with the IR data, PdN_2Cl_2 coordination core may be presumed for complexes I and III, and CuN_2Cl_2 , for II and IV.

When the reaction of H₂L³ with CuCl₂·2H₂O was carried out at lower reactant concentrations, we isolated single crystals of the complex [Cu(i-PrOH)Cl₂ $(\mu-H_2L^3)CuCl_2\cdot H_2O$ (V) whose composition differed from that of IV. The structure of V was determined by X-ray analysis. Its crystallographic parameters and details of the X-ray diffraction experiment and structure refinement are given in Table 4. The crystalline structure of V is represented by molecules of dinuclear copper(II) complex and crystal water (Fig. 3). Molecule H_2L^3 is a tetradentate bridging and chelating ligand. Coordination of four nitrogen atoms in the ligand molecule to two copper ions leads to closure of two five-membered chelate rings CuN₂C₂. The distances from the copper atoms to the oxime nitrogen atoms [Cu-N 1.993(7)-1.989(7) Å] are appreciably shorter than to the amino nitrogen atoms [2.042(7)-2.052(6) Å] (Table 5). In addition, the oxime groups are involved in intramolecular O-H···Cl hydrogen bonding to form two five-membered Hchelate rings $Cu^1N^2O^1H^{O1}Cl^1$ and $Cu^2N^2O^1H^{O1}'Cl^1'$. The $O^1\cdots Cl^1$ and $O^1\cdots Cl^1'$ distances are 3.099(7) and

Table 4. Crystallographic parameters of complex **V** and details of X-ray diffraction experiment and structure refinement

Parameter	Value
Formula	C ₃₆ H ₅₂ Cl ₄ Cu ₂ N ₄ O ₄
Molecular weight	873.70
Crystal system	Rombic
Space group	$P 2_1 2_1 2_1$
a, Å b, Å c, Å	8.625(5) 18.957(12) 25.968(16)
V , $\mathring{\mathbf{A}}^3$	4246(4)
$d_{\rm calc}$, mg/cm ³ ; Z	1.367; 4
μ , mm ⁻¹	1.293
Crystal size, mm	0.2×0.05×0.05
Scan range θ , deg	1.33–26.52
Total reflection number Number of independent reflections R_{int}	37993 8745 0.1657
Number of reflections with $I > 2\sigma(I)$	8745
Number of refined parameters	482
Goodness of fit (F^2)	0.983
Divergence factor $[I > 2\sigma(I)]$ R_1 wR_2	0.0746 0.1231
Divergence factor (all reflections) R_1 wR_2	0.2047 0.1593
Absolute structure parameter	-0.02(2)
Residual electron density (max/min), $e/\text{Å}^3$	0.415/-0.398

3.017(7) Å, respectively. Both H-chelate rings have *envelope* conformation where Cl^1 and $Cl^{1'}$ deviate from the $Cu^1N^2O^1H^{01}$ and $Cu^2N^2'O^1'H^{01'}$ planes, respectively, by 0.67(1) and -0.48(1) Å; the hydrogen bond angles are $\angle O^1H^{01}Cl^1$ 135.0° and $\angle O^1'H^{01'}Cl^{1'}$ 137.5°. Both six-membered carbocycles appear in *chair* conformation: the C^1 , C^4 and $C^{1'}$, $C^{4'}$ atoms deviate from the planes formed by the remaining four atoms by -0.57(1), 0.71(1) and 0.55(1), -0.69(1) Å, respectively.

Structure V features different coordination numbers (4 and 5) of the copper atoms (Fig. 3). The Cu¹ coor-

dination polyhedron Cl₂N₂ is a distorted tetrahedron formed by two nitrogen atoms of ligand H₂L³ and two chlorine atoms Cl [Cu-Cl 2.215(2), 2.258(3) Å]. The Cu² coordination polyhedron Cl₂N₂O is a distorted square pyramid whose base is formed by two nitrogen atoms of the ligand and two chlorine atoms [Cu-Cl 2.232(3), 2.277(3) Å], and the vertex is occupied by the oxygen atom O^2 of *i*-PrOH molecule as extra ligand. The Cu² atom is displaced toward the vertex by 0.224(3) Å. The Cu²-O² distance equal to 2.267(8) Å only slightly differs from the Cu-O distance (2.213 Å) in the copper(II) complex containing a coordinated MeOH molecule [25]. Thus we have revealed the possibility for coordination of i-PrOH molecule in the reaction of CuCl₂·2H₂O with H₂L³ in *i*-PrOH–MeCN. Presumably, complex IV contained neither crystal water nor i-PrOH molecules since the product was dried in a vacuum desiccator over anhydrous magnesium perchlorate. The CuCl₂ fragments in structure V appear in a cisoid arrangement. The Cu^1-N^1 and N^1-Cu^2 bonds together with the $N^1\cdots C^{15}$ and $C^{15} \cdots N^{1'}$ axes form a W-shaped profile (the $Cu^1N^1C^{15}$, $N^1C^{15}N^{1'}$, and $C^{15}N^{1'}Cu^2$ angles are 105.2, 116.9, and 103.8°, respectively; Fig. 3). The N₂Cl₂ planes in the coordination units are turned through a dihedral angle of ~49.3° with respect to each other. The $Cu^1 \cdots Cu^2$ distance is 4.470(4) Å.

Figure 4 shows projection of the crystalline structure of complex V onto the (100) plane. Analysis of intermolecular distances in structure V revealed additional contacts between the Cu1 atom of one molecule and Cl² atom in the neighboring molecule [2.983(4) Å], as well as other contacts and hydrogen bonds involving chlorine atoms (Fig. 4). The Cu¹···Cl² distance is considerably longer than the Cu-Cl coordination bond in compounds with one bridging chlorine atom (2.51–2.67 Å) [22, 26]; therefore, it may be regarded as a contact. The shortest contacts formed by chlorine atoms are Cl¹···O² 3.130(9) Å and Cl²···N¹ 3.377(8) Å. These contacts link dinuclear molecules V to produce zigzag chains along the c axis. Disordered crystal water molecules are located between molecules V and are also involved in hydrogen bonding.

The structure of complex **III** assigned on the basis of its NMR spectra is similar to the structure of **V** determined by X-ray analysis. Complexes **III** and **V** are characterized by similar *chair*-like conformations of the six-membered carbocycle with equatorial isopropenyl group and axial NH group on C¹, *trans*

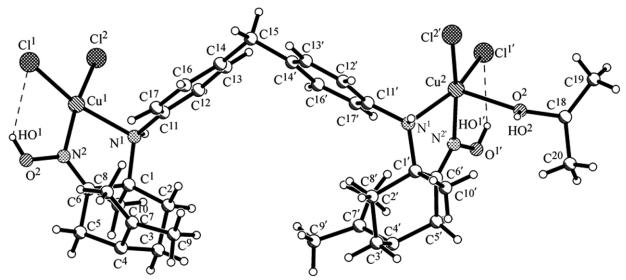


Fig. 3. Structure of acentric dinuclear complex V according to the X-ray diffraction data. Numbering of non-hydrogen atom is given.

orientation of the methyl and phenyl groups in the five-membered chelate ring, and partial insertion of the benzene ring into the cavity formed by the chlorine atom in the neighboring coordination unit and $\rm C^6H_2$ group.

Thus the results of the present study have extended the series of dinuclear Pd(II) complexes with chiral diamino dioximes derived from natural terpenes, and demonstrated the possibility for the preparation of analogous dinuclear Cu(II) complexes.

EXPERIMENTAL

The elemental compositions were determined on Hewlett-Packard 185, Carlo Erba 1106, and Euro EA 3000 analyzers. The magnetic susceptibilities of polycrystalline complexes were measured by the Faraday method at room temperature. The ESR spectra of II and IV were recorded on a Varian E-109 radiospectrometer equipped with an analog-to-digital converter and proprietary software for data acquisition and primary processing. The spectra were recorded in the Q-range at room temperature and in the X-range at liquid nitrogen temperature (frozen solutions with a concentration of 10^{-2} to 10^{-3} M) using MgO powder containing Mn^{2+} ions at a ratio of 1:5000 (g = 2.003, a = 86.8 G) or 2,2-diphenyl-1-picrylhydrazyl as calibration standard. The NMR spectra were obtained on a Bruker DRX-500 instrument at 500.13 MHz for ¹H and 125.75 MHz for ¹³C at 27 and 50°C. The chemical shifts were determined relative to the solvent signals (CHCl₃, δ 7.24 ppm; CDCl₃, δ _C 76.90 ppm;

CHD₂CN, δ 1.93 ppm; CD₃CN, δ _C 118.20 ppm). Signals were assigned using J-modulation (noisemodulated proton decoupling, opposite phase for CH₂ protons, adjustment for a direct coupling constant ${}^{1}J_{CH}$ of 145 Hz) and two-dimensional homo (¹H–¹H) and heteronuclear ($^{13}\text{C}-^{1}\text{H}$, J = 145 Hz) correlation techniques. The internal rotation barrier ΔG^{\neq} (kcal/mol) was estimated by the Eyring equation on the basis of the temperature dependence of the aromatic proton signal width. The IR spectra were obtained in the range from 4000 to 200 cm⁻¹ on Scimitar FTS 2000, BOMEM MB-102, and Bruker TENSOR 27 spectrometers with Fourier transform; samples were prepared as mulls in mineral or fluorinated oil, KBr or CsI pellets, or 1% solutions in CHCl3. The optical rotations were measured on a PolAAr 3005 polarimeter. The mass spectra (electron impact, 70 eV) were recorded on a Thermo Scientific DFS mass spectrometer.

The X-ray diffraction data for a single crystal of V were acquired on a Bruker X8 Apex CCD automatic diffractometer equipped with a two-coordinate detector (Mo K_{α} irradiation, $\lambda = 0.71073$ Å, graphite monochromator) according to standard procedure. The structure was solved by the direct method and was refined against F^2 by the full-matrix least-squares procedure in anisotropic approximation for non-hydrogen atoms using SHELXL-97 software package [28]. Hydrogen atoms were placed into positions calculated on the basis of geometry considerations and were refined according to the *riding* model. Hydrogen atoms in crystal water molecules were not localized.

Table 5. Principal bond lengths (d) and bond angles (ω) in the crystal structure of V^a

Bond	d, Å	Bond	d, Å	Bond	d, Å	Bond	d, Å
Cu ¹ -N ²	1.989(7)	Cu ² -N ^{2'}	1.993(7)	N^2 – C^6	1.265(10)	N ^{1'} -C ^{1'}	1.505(9)
Cu^1-N^1	2.042(7)	$Cu^2-N^{1'}$	2.052(6)	C^{1} – C^{10}	1.511(11)	$N^{2'}$ – $C^{6'}$	1.254(10)
Cu^1 – Cl^2	2.215(2)	Cu ² -Cl ^{2'}	2.232(3)	$C^{7}-C^{8}$	1.326(13)	$C^{1'}$ – $C^{10'}$	1.527(11)
Cu^1 – Cl^1	2.258(3)	Cu^2-O^2	2.267(8)	C^{7} – C^{9}	1.479(13)	$C^{7'} - C^{8'}$	1.353(14)
O^1 $-N^2$	1.376(9)	Cu^2 – $Cl^{1'}$	2.277(3)	C18-C19	1.501(18)	C ^{7'} –C ^{9'}	1.478(14)
N^1 – C^{11}	1.443(10)	$O^{1'} - N^{2'}$	1.394(9)	C^{18} – C^{20}	1.553(17)	$O^2 - C^{18}$	1.483(14)
N^1 – C^1	1.516(10)	N1'-C11'	1.468(9)				
Angle	ω, deg	Angle	ω, deg	Angle	ω, deg	Angle	ω, deg
$N^2Cu^1N^1$	78.7(3)	$N^{2'}Cu^2N^{1'}$	77.8(3)	$C^4C^3C^2$	111.4(8)	$C^{6'}C^{1'}C^{2'}$	110.1(7)
$N^2Cu^1Cl^2$	166.4(2)	$N^{2'}Cu^2Cl^{2'}$	169.3(2)	$C^7C^4C^3$	113.5(9)	$N^{1'}C^{1'}C^{2'}$	111.2(7)
$N^1Cu^1Cl^2$	92.3(2)	$N^{1'}Cu^2Cl^{2'}$	91.9(2)	$C^7C^4C^5$	114.5(9)	$C^{10'}C^{1'}C^{2'}$	108.5(8)
$N^2Cu^1Cl^1$	92.9(2)	$N^2 Cu^2O^2$	90.1(3)	$C^3C^4C^5$	108.9(9)	$C^{3'}C^{2'}C^{1'}$	111.6(9)
$N^1Cu^1Cl^1$	149.3(2)	$N^{1'}Cu^2O^2$	106.2(3)	$C^6C^5C^4$	110.1(8)	$C^{4'}C^{3'}C^{2'}$	112.6(7)
$Cl^2Cu^1Cl^1$	99.92(11)	$Cl^{2'}Cu^2O^2$	89.8(2)	$N^2C^6C^5$	125.1(9)	$C^{7'}C^{4'}C^{5'}$	115.1(9)
$C^{11}N^1C^1$	118.7(6)	$N^{2'}Cu^2Cl^{1'}$	90.9(2)	$N^2C^6C^1$	116.6(8)	$C^{7'}C^{4'}C^{3'}$	111.5(10)
$C^{11}N^1Cu^1$	104.8(5)	$N^{1'}Cu^2Cl^{1'}$	152.7(2)	$C^5C^6C^1$	118.2(8)	$C^{5'}C^{4'}C^{3'}$	108.0(8)
$C^1N^1Cu^1$	111.6(5)	$Cl^{2'}Cu^2Cl^{1'}$	99.72(11)	$C^8C^7C^4$	125.4(10)	$C^{6'}C^{5'}C^{4'}$	112.7(8)
$C^6N^2O^1$	117.5(8)	$O^2Cu^2Cl^{1'}$	98.4(2)	$C^8C^7C^9$	118.8(9)	$N^{2'}C^{6'}C^{5'}$	127.5(9)
$C^6N^2Cu^1$	119.7(6)	$C^{11'}N^{1'}C^{1'}$	119.5(6)	$C^4C^7C^9$	115.8(9)	$N^{2'}C^{6'}C^{1'}$	112.6(7)
$O^1N^2Cu^1$	122.6(6)	$C^{11'}N^{1'}Cu^2$	104.6(4)	$C^{13}C^{14}C^{15}$	123.3(9)	C5'C6'C1'	119.7(8)
$C^{10}C^1N^1$	106.4(7)	$C^{1'}N^{1'}Cu^2$	109.0(5)	$C^{16}C^{14}C^{15}$	119.8(9)	$C^{8'}C^{7'}C^{9'}$	117.2(12)
$C^{10}C^1C^2$	113.5(8)	$C^{6'}N^{2'}O^{1'}$	115.0(7)	$C^{14'}C^{15}C^{14}$	115.8(7)	$C^{8'}C^{7'}C^{4'}$	121.8(11)
$N^1C^1C^2$	112.8(7)	$C^{6'}N^{2'}Cu^2$	122.3(6)	$C^{18}O^2Cu^2$	135.7(10)	$C^{9'}C^{7'}C^{4'}$	120.8(11)
$C^{10}C^1C^6$	108.2(7)	$O^{1'}N^{2'}Cu^2$	122.4(6)	$O^2C^{18}C^{19}$	107.5(17)	$C^{17'}C^{11'}C^{12'}$	119.4(8)
$N^1C^1C^6$	105.7(7)	$C^{6'}C^{1'}N^{1'}$	109.6(6)	$O^2C^{18}C^{20}$	96.4(14)	$C^{17'}C^{11'}N^{1'}$	121.3(8)
$C^2C^1C^6$	109.8(8)	$C^{6'}C^{1'}C^{10'}$	109.9(7)	$C^{19}C^{18}C^{20}$	137(2)	$C^{12'}C^{11'}N^{1'}$	119.3(7)
$C^3C^2C^1$	113.3(8)	$N^{1'}C^{1'}C^{10'}$	107.4(7)				

^a The C–C bond lengths in the benzene rings range from 1.345(10) to 1.403(11) Å, and in the cyclohexane rings, from 1.473(11) to 1.553(11) Å.

The principal bond lengths and bond angles are given in Table 5. The complete set of crystallographic data (including coordinates of atoms, bond lengths, and bond angles) was deposited to the Cambridge Crystallographic Data Centre (entry no. CCDC 840633).

Reagent-grade $CuCl_2 \cdot 2H_2O$ and $PdCl_2$, 96% EtOH, concentrated hydrochloric acid, chemically pure *i*-PrOH, and analytical grade MeCN were used. The ligands H_2L^2 and H_2L^3 were synthesized from 4,4′-methylenedianiline and (+)-3-carene or (+)-limonene, respectively, through the corresponding nitroso

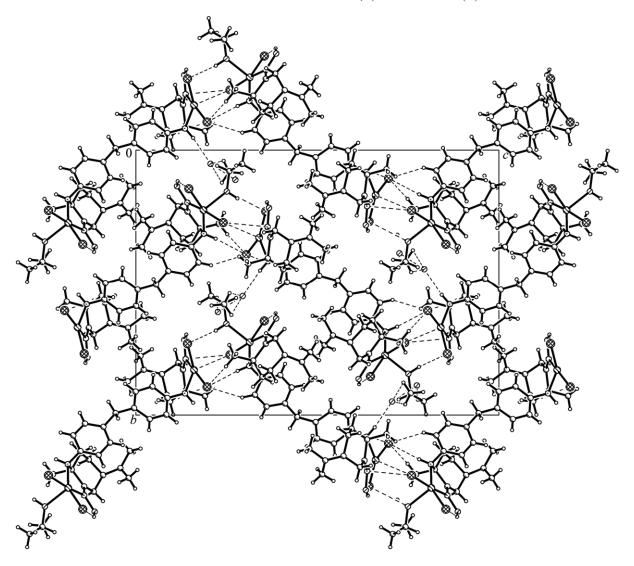


Fig. 4. Projection of the crystal structure of complex V onto the (100) plane. Hydrogen bonds and intermolecular contacts are shown with dashed lines.

chlorides according to the procedure described in [3, 27] for the preparation of simplest bis- α -amino oximes.

4,4'-Methylenebis{*N*-[(1*S*,3*S*,4*E*,6*R*)-4-hydroxyiminocaran-3-yl]aniline} (H₂L²). Grayish–yellowish powder, mp 170–171°C (decomp., from MeCN), $\left[\alpha\right]_D^{28}$ = +116 (c = 0.56, THF–MeOH, 1:1 by volume). IR spectrum (CHCl₃), ν , cm⁻¹: 3586 (O–H), 3422 (N–H), 1615, 940 and 923 (N–O). UV spectrum (EtOH), λ_{max} , nm (log ϵ): 259 (4.18), 299 (3.27). High-resolution mass spectrum: m/z 528.3455 [M]⁺. C₃₃H₄₄N₄O₂. Calculated: M 528.3459. Mass spectrum, m/z (I_{rel} , %): 528 (1), 363 (19), 346 (10), 345 (5), 305 (5), 281 (16), 238 (6), 223 (19), 198 (51), 197 (33), 182 (15), 180 (12), 165 (30), 150 (53), 148 (22), 135 (20), 133 (15),

132 (26), 123 (42), 122 (26), 119 (10), 118 (11), 110 (30), 107 (29), 106 (100), 105 (40), 94 (21), 93 (37), 91 (77), 79 (51), 77 (70), 67 (33), 65 (26), 55 (26), 53 (29), 51 (16). The NMR spectra are given in Table 1.

4,4'-Methylenebis{*N*-[(1*S*,2*E*,4*R*)-2-hydroxyimino-*p*-menth-8-en-1-yl]aniline} (H_2L^3). Grayish–yellowish powder, mp 145–146°C (decomp., from MeCN), $[\alpha]_D^{28} = +49 \ (c = 1.01, \text{ MeOH})$. IR spectrum (CHCl₃), v, cm⁻¹: 3586 (O–H), 3372 (N–H), 3093 (C=CH₂), 1648 (C=N), 1612, 928 (N–O), 893 (C=CH₂). UV spectrum (EtOH), λ_{max} , nm (logɛ): 258 (4.12), 300 (3.29). Highresolution mass spectrum: m/z 528.3459 [M]⁺. C₃₃H₄₄N₄O₂. Calculated: M 528.3459. Mass spectrum, m/z (I_{rel} , %): 528 (0.1), 363 (9), 348 (3), 346 (4), 332 (1), 223 (2), 198 (100), 197 (63), 195 (5), 182 (18), 180

(14), 165 (9), 150 (6), 148 (9), 122 (13), 106 (34), 99 (6), 93 (8), 91 (10), 77 (10), 67 (9), 55 (5), 53 (6). The NMR spectra are given in Table 2.

Tetrachloro-μ-(4,4'-methylenebis{N-[(1S,3S,4E,6R)-4-hydroxyiminocaran-3-yl]aniline}-N,N,N',N')dipalladium(II) Pd₂(H₂L²)Cl₄ (I). A solution of 0.036 g (0.2 mmol) of PdCl₂ in 1.5 ml of concentrated hydrochloric acid was evaporated almost to dryness, 1.5 ml of EtOH was added, and a warm (~50–60°C) solution of 0.053 g (0.1 mmol) of H₂L² in 1.5 ml of EtOH was added. A yellow solid separated, the mixture was kept for 3–4 h, and the precipitate was filtered off with suction, washed with EtOH and hexane, and dried in air. Yield 0.050 g (57 %). [α]₅₇₈²⁰ = +78 (c = 0.38, CH₂Cl₂). Found, %: C 45.1; H 5.2; N 6.5. C₃₃H₄₄N₄· Cl₄O₂Pd₂. Calculated, %: C 44.8; H 5.0; N 6.3.

Tetrachloro-μ-(4,4'-methylenebis{N-[(1S,3S,4E,6R)-4-hydroxyiminocaran-3-yl]aniline}-N,N,N',N')dicopper(II) $Cu_2(H_2L^2)Cl_4$ (II). A solution of 0.034 g (0.2 mmol) of $CuCl_2 \cdot 2H_2O$ in 1.5 ml of EtOH was added to a warm (~50–60°C) solution of 0.053 g (0.1 mmol) of H_2L^2 in 1.5 ml of EtOH. A solid gradually separated from the mixture. The mixture was kept for 7 days in a capped beaker at room temperature, and the dark green product was filtered off with suction, washed with EtOH and hexane and dried in air. Yield 0.052 g (60%). Found, %: C 49.5; H 5.6; N 7.0. $C_{33}H_{44}N_4Cl_4Cu_2O_2$. Calculated, %: C 49.7; H 5.5; N 7.0.

Tetrachloro- μ -(4,4'-methylenebis{N-[(1S,2E,4R)-2-hydroxyimino-p-menth-8-en-1-yl|aniline}- N,N,N',N')dipalladium(II) Pd₂(H₂L³)Cl₄ (III). A solution of 0.053 g (0.1 mmol) of H_2L^3 in 5 ml of a 1:1 (v/v) EtOH-MeCN mixture was added to a warm (~50-60°C) solution of 0.036 g (0.2 mmol) of PdCl₂ in a mixture of 2 ml of EtOH and 0.5 ml of concentrated hydrochloric acid. The resulting solution was filtered through a filter paper, and the filtrate was kept at room temperature. Fine orange solid gradually separated. The mixture was evaporated to a volume of $\sim 2-3$ ml, and the precipitate was filtered off with suction, washed with hexane, and dried in a vacuum desiccator. Yield 0.061 g (69%). $[\alpha]_{578}^{30} = +139$ (c = 0.26, MeOH). Found, %: C 43.5; H 5.3; N 6.1. C₃₃H₄₄N₄Cl₄O₂Pd₂. Calculated, %: C 44.9; H 5.0; N 6.3.

Tetrachloro- μ -(4,4'-methylenebis{N-[(1*S*,2*E*,4*R*)-2-hydroxyimino-*p*-menth-8-en-1-yl]aniline *N*,*N*,*N*',*N*'})-dicopper(II) Cu₂(H₂L³)Cl₄ (IV). A solution of 0.034 g (0.2 mmol) of CuCl₂·2H₂O in 3 ml of MeCN was

added to a solution of 0.053 g (0.1 mmol) of H₂L³ in 4 ml of a 1:1 (v/v) *i*-PrOH–MeCN mixture. The resulting solution was kept at room temperature, and evaporation of the solvent was accompanied by gradual separation of dark green crystals. The solvent was evaporated to as small volume as possible (~2–3 ml), and the precipitate was filtered off with suction, washed with cold isopropyl alcohol and hexane, and dried in a vacuum desiccator. Yield 0.048 g (60%). Found, %: C 48.4; H 5.8; N 7.1. C₃₃H₄₄N₄Cl₄Cu₂O₂. Calculated, %: C 49.7; H 5.5; N 7.0.

A solution of 0.017 g (0.1 mmol) of $CuCl_2 \cdot 2H_2O$ in 3 ml of MeCN was added to a solution of 0.026 g (0.05 mmol) of H_2L^3 in 4 ml of a 1:1 (v/v) *i*-PrOH–MeCN mixture. While keeping the resulting solution at ~3°C single crystals of $[Cu(i\text{-PrOH})Cl_2(\mu\text{-H}_2L^3)$ $CuCl_2 \cdot H_2O]$ (V) separated and were withdrawn from the solution and covered with mineral oil.

ACKNOWLEDGMENTS

The authors thank V.A. Daletskii for measuring static magnetic susceptibilities, A.P. Zubareva and O.S. Koshcheeva for performing elemental analyses, and N.I. Alferova for recording IR spectra. This study was performed under financial support by the Russian Foundation for Basic Research (project no. 10-03-00346).

REFERENCES

- 1. Von Zelewsky, A. and Mamula, O., J. Chem. Soc., Dalton Trans., 2000, no. 3, p. 219.
- 2. Mamula, O. and von Zelewsky, A., *Coord. Chem. Rev.*, 2003, vol. 242, p. 87.
- 3. Tkachev, A.V., *Ros. Khim. Zh.*, 1998, vol. 42, nos. 1–2, p. 42.
- 4. Larionov, S.V. and Tkachev, A.V., *Ros. Khim. Zh.*, 2004, vol. 48, no. 4, p. 154.
- Larionov, S.V., Myachina, L.I., Glinskaya, L.A., Klevtsova, R.F., Sheludyakova, L.A., Tkachev, A.V., and Bizyaev, S.N., Koord. Khim., 2003, vol. 29, no. 12, p. 897.
- 6. Larionov, S.V., Myachina, L.I., Sheludyakova, L.A., Boguslavskii, E.G., Tkachev, A.V., and Bizyaev, S.N., *Koord. Khim.*, 2004, vol. 30, no. 12, p. 897.
- 7. Larionov, S.V., Myachina, L.I., Savel'eva, Z.A., Glinskaya, L.A., Klevtsova, R.F., Sheludyakova, L.A., Tkachev, A.V., and Bizyaev, S.N., *Koord. Khim.*, 2004, vol. 30, no. 12, p. 888.
- 8. Larionov, S.V., Savel'eva, Z.A., Glinskaya, L.A., Klevtsova, R.F., Bizyaev, S.N., and Tkachev, A.V., *Zh. Strukt. Khim.*, 2005, vol. 46, no. 3, p. 558.

- 9. Larionov, S.V., Tkachev, A.V., Savel'eva, Z.A., Myachina, L.I., Glinskaya, L.A., Klevtsova, R.F., and Bizyaev, S.N., *Koord. Khim.*, 2006, vol. 32, no. 4, p. 261.
- Larionov, S.V., Savel'eva, Z.A., Glinskaya, L.A., Klevtsova, R.F., Sheludyakova, L.A., Bizyaev, S.N., and Tkachev, A.V., *Koord. Khim.*, 2006, vol. 32, no. 5, p. 365.
- 11. Savel'eva, Z.A., Bizyaev, S.N., Glinskaya, L.A., Klevtsova, R.F., Tkachev, A.V., and Larionov, S.V., *Koord. Khim.*, 2006, vol. 32, no. 10, p. 754.
- 12. Savel'eva, Z.A., Klevtsova, R.F., Glinskaya, L.A., Ikorskii, V.N., Bizyaev, S.N., Tkachev, A.V., and Larionov, S.V., *Koord. Khim.*, 2006, vol. 32, no. 11, p. 816.
- 13. Larionov, S.V., Kokina, T.E., Agafontsev, A.M., Gorshkov, N.B., Tkachev, A.V., Klevtsova, R.F., and Glinskaya, L.A., *Koord. Khim.*, 2007, vol. 33, no. 7, p. 525.
- Kokina, T.E., Myachina, L.I., Glinskaya, L.A., Tkachev, A.V., Klevtsova, R.F., Sheludyakova, L.A., Bizyaev, S.N., Agafontsev, A.M., Gorshkov, S.N., and Larionov, S.V., Koord. Khim., 2008, vol. 34, no. 2, p. 120.
- Larionov, S.V., Tkachev, A.V., Myachina, L.I., Savel'eva, Z.A., Glinskaya, L.A., Klevtsova, R.F., Agafontsev, A.M., and Bizyaev, S.N., Koord. Khim., 2009, vol. 35, no. 4, p. 291.
- Tkachev, A.V., Petukhov, P.A., Konchenko, S.N., Korenev, S.V., Fedotov, M.A., Gatilov, Yu.V., Rybalova, T.V., and Kholdeeva, O.A., *Tetrahedron: Asymmetry*, 1995, vol. 6, no. 1, p. 115.
- 17. Larionov, S.V., Myachina, L.I., Tkachev, A.V., Sheludyakova, L.A., and Boguslavskii, E.G., *Koord. Khim.*, 2002, vol. 28, no. 12, p. 909.

- 18. Larionov, S.V., Myachina, L.I., Glinskaya, L.A., Klevtsova, R.F., Bizyaev, S.N., and Tkachev, A.V., *Izv. Akad. Nauk, Ser. Khim.*, 2007, no. 9, p. 1708.
- 19. Larionov, S.V., Savel'eva, Z.A., Glinskaya, L.A., Klevtsova, R.F., Ikorskii, V.N., Bizyaev, S.N., and Tkachev, A.V., *Zh. Neorg. Khim.*, 2005, vol. 50, no. 5, p. 786.
- 20. Tkachev, A.V., Denisov, A.Yu., Rukavishnikov, A.V., Chibirjaev, A.M., Gatilov, Yu.V., and Bagrjanskaja, I.Yu., *Aust. J. Chem.*, 1992, vol. 45, no. 6, p. 1077.
- Larionov, S.V., Savel'eva, Z.A., Romanenko, G.V., Tkachev, A.V., Ikorskii, V.N., and Boguslavskii, E.G., Koord. Khim., 2002, vol. 28, no. 11, p. 832.
- 22. Kokina, T.E., Glinskaya, L.A., Klevtsova, R.F., Boguslavskii, E.G., Sheludyakova, L.A., Bizyaev, S.N., Tkachev, A.V., and Larionov, S.V., *Koord. Khim.*, 2009, vol. 35, no. 3, p. 202.
- 23. Savel'eva, Z.A., Tkachev, A.V., Glinskaya, L.A., Bizyaev, S.N., Klevtsova, R.F., and Larionov, S.V., *Koord. Khim.*, 2009, vol. 35, no. 2, p. 130.
- 24. Myachina, L.I., Tkachev, A.V., Romanenko, G.V., Sheludyakova, L.A., Boguslavskii, E.G., and Larionov, S.V., *Koord. Khim.*, 2003, vol. 29, no. 8, p. 611.
- 25. Mishra, A.K., Purohit, C.S., and Verma, S., *Cryst. Eng. Commun.*, 2008, vol. 10, no. 10, p. 1296.
- 26. Higgins, S.J. and Shaw, B.L., *J. Chem. Soc., Dalton Trans.*, 1988, no. 2, p. 457.
- 27. Petukhov, P.A., Bizyaev, S.N., and Tkachev, A.V., *Izv. Akad. Nauk, Ser. Khim.*, 2001, no. 11, p. 2013.
- 28. Sheldrick, G.M., SHELXS97 and SHELXL97. Programs for the Refinement of Crystal Strustures, Göttingen (Germany): Univ. of Göttingen, 1997.